
Coding Non-Visually in Visual Studio Code: Collaboration
Towards Accessible Development Environment for Blind

Programmers
JooYoung Seo

School of Information Sciences, University of Illinois
at Urbana-Champaign

Champaign, USA

Megan Rogge
Microsoft

Redmond, USA

ABSTRACT
This paper delineates a fruitful collaboration between blind
and sighted developers, aiming to augment the accessibil-
ity of Visual Studio Code (VSCode). Our shared journey
is portrayed through examples drawn from our interaction
with GitHub issues, pull requests, review processes, and in-
sider’s releases, each contributing to an improved VSCode
experience for blind developers. One key milestone of our co-
design process is the establishment of an accessible terminal
buffer, a significant enhancement for blind developers using
VSCode. Other innovative outcomes include Git Diff audio
cues, adaptable verbosity settings, intuitive help menus, and
a targeted accessibility testing initiative. These tailored im-
provements not only uplift the accessibility standards of VS-
Code but also provide a valuable blueprint for open-source
developers at large. Through our shared dedication to pro-
moting inclusivity in software development, we aim for the
strategies and successes shared in this paper to inspire and
guide the open-source community towards crafting more ac-
cessible software environments.

CCS CONCEPTS
• Human-centered computing → Accessibility design
and evaluation methods.

KEYWORDS
nonvisual programming, accessibility, integrated development
environment, visual studio code
ACM Reference Format:
JooYoung Seo and Megan Rogge. 2018. Coding Non-Visually in
Visual Studio Code: Collaboration Towards Accessible Develop-
ment Environment for Blind Programmers. In Proceedings of The
25th International ACM SIGACCESS Conference on Computers
and Accessibility (ASSETS). ACM, New York, NY, USA, 6 pages.
https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ASSETS, October 22–25, 2023, New York, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06…$15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
An integrated development environment (IDE) is an appli-
cation that conveniently provides essential functions for the
entire programming process, including source editing, com-
piling and interpreting, and debugging. IDEs have become
an essential tool for not only software developers but also
STEM engineers and data scientists in many fields to effi-
ciently manage their computing environments [3, 5, 7]. How-
ever, blind developers1 are not able to take advantage of
the many features that graphical user interface (GUI)-based
IDEs offer [12]. For example, syntax highlighting, code auto-
completion and autosuggestion, diagnostics and linting, vari-
able watches and breakpoints are underutilized even among
experienced blind programmers, and many blind developers
are still working manually with simple text like Notepad,
along with runtime and compile terminals [1, 2, 9]. Behind
this problem are intertwined issues of accessibility and learn-
ability. Because different IDEs use different architectures
and have different levels of accessibility compliance, blind
developers face a new learning curve each time they use an
IDE. Blind developers also face the additional challenge of
learning the non-visual workaround of accessing an IDE with
a screen reader [9]. Although there is a community of blind
programmers called Program-L [8] where blind programmers
help and support each other, IDEs remain a daunting barrier
for blind people.

These difficulties are a major socio-technical barrier to
blind developers reaching their full potential in the comput-
ing field and to social and professional participation. From
the perspective of the social model [10], which recognizes
that an individual’s disability may stem from structures and
cultures that sociotechnically limit their access rather than
from physical, sensory, cognitive, or emotional issues, we
can see that IDE accessibility issues are no longer a group-
specific problem that blind people must endure, but a col-
lective task for the technology community to reduce barri-
ers together. Specifically, to address these issues, blind and
sighted developers need to work together to understand the
challenges that blind developers face in using IDEs and then
collaboratively find ways to address those challenges. This

1We use the identity-first language (i.e., blind people) instead of the
person-first language (i.e., people with visual impairments or vision
loss) when addressing this population, guided by the perspective of
the National Federation of the Blind.

https://orcid.org/0000-0002-4064-6012
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ASSETS, October 22–25, 2023, New York, NY Seo and Rogge

perspective is consistent with the “interdependent frame-
work” [4, 6] that other accessibility researchers have advo-
cated to move away from the dependency of accessibility on
the individual with disabilities and instead view accessibil-
ity as a shared responsibility of people with and without
disabilities and the environment surrounding them.

This paper is the empirical product of blind and sighted
developers who have thought deeply about these issues and
actively collaborated. We describe how the first author, who
is blind, and the second author, who is sighted, have been
working together to make the open source IDE Visual Studio
Code (VSCode) non-visually accessible and what specific ac-
cessibility features have been implemented as a result of our
collaboration. In the following sections, we start with some
background on how our collaboration began, then present
our methods and deliverables. Finally, we’ll share some in-
sights from our collaboration.

2 BACKGROUND: VISUAL STUDIO
CODE AND ACCESSIBILITY

Visual Studio Code is a lightweight, free, and powerful open-
source code editor2 which runs on the desktop and on the
web. It is available for Windows, macOS, and Linux. It has
built-in support for JavaScript, TypeScript, and Node.js and
a rich ecosystem of extensions for other languages and run-
times, such as C++, C#, Java, Python, PHP, Go, .NET,
and more. Accessibility has been a core priority for VSCode
since its inception. Among the many architectural elements
of VSCode, the following, in particular, has contributed to
its accessibility. First, VSCode is a cross-platform applica-
tion built with the Chromium-based Electron Framework.
In other words, VSCode is an application built using web
technologies, which gives it the flexibility to follow web ac-
cessibility guidelines and respond to the accessibility of var-
ious screen readers and assistive technologies regardless of
the operating system. Second, Monaco, the primary editor
of VSCode, has its own screen reader compatibility mode,
which is designed to be selectively turned on and off depend-
ing on the user’s intent. Third, Microsoft’s xterm.js terminal,
used by VSCode, also provides a separate screen reader ac-
cessibility switch in accordance with the Web Accessibility
Guidelines. Finally, VSCode is an open-source project where
anyone can suggest and fix features on GitHub, and a daily
insiders version is built so that real users can quickly use
the alpha version and provide feedback to the developers,
which in turn leads to a higher quality, user-centered stable
version.

The accessibility benefits of VSCode and tips on how to
take advantage of them have been shared among members of
the Program-L mailing list, a community of blind program-
mers. In addition, due to its growing popularity among blind
programmers, there has been a recent spate of research and
development of accessible plug-ins based on VSCode [11, 15].
Nevertheless, the fact that VSCode is accessible compared

2In this paper, the terms integrated development environment and
code editor are used interchangeably.

to other IDEs does not necessarily mean that it is easy for
blind programmers to use. For example, there is still a con-
stant stream of questions on Program-L about VSCode, not
only about its basic usage, but also about features that have
already been made accessible in VSCode, such as the termi-
nal, debugging, and the Jupyter Notebook extension, which
suggests that many blind programmers are often frustrated
by the tricky usability of VSCode accessibility. The following
section describes how the authors of this paper collaborated
to address this usability issue of VSCode accessibility.

3 METHODS
3.1 Author Profiles and Collaboration

Context
The first author of this paper is blind with only light per-
ception, currently working as an assistant professor in the
School of Information Sciences at the University of Illinois
at Urbana-Champaign. At the university, he teaches intro-
ductory data science courses using R and Python to under-
graduate and graduate students. As a lifelong non-visual
programmer, he has experience with a variety of IDEs, in-
cluding Visual Studio, Eclipse, and Net Bean, and text edi-
tors such as Emacs/Emacspeak, VIM, and NotePad++, on
Linux, Mac, and Windows operating systems, using a variety
of screen readers (e.g., JAWS, NVDA, Narrator, VoiceOver,
and Orca) and refreshable braille displays. He is a certi-
fied professional in accessibility core competencies (CPACC)
from the International Association of Accessibility Profes-
sionals and has contributed code to a number of open-source
data science projects to improve screen reader accessibility,
including RStudio IDE Server and the web-based data sci-
ence dashboard Shiny, reproducible technical publishing sys-
tems (e.g., R Markdown, bookdown, and Quarto), and the
data table package gt. He is also a member of Program-L.
In this community, he has experienced first-hand the chal-
lenges that blind programmers face in using IDEs and how
they overcome them by interacting with other blind pro-
grammers and participating in discussions. To improve these
community-wide challenges, he created his first issue on the
Microsoft VSCode public GitHub site on May 31, 2020, and
has since created a total of 164 contributions (87 issues; 76
post comments and mentions; 1 pull request) to actively sug-
gest usability improvements for blind programmers in VS-
Code and interact with other open source developers3.

The second author is a VSCode software engineer. She
has worked on the product since graduating from the Uni-
versity of North Carolina at Chapel Hill in 2020 with the
highest distinction and highest honors for her research and
work with Dr. Gary Bishop on semi-automated gaming for
users with a wide range of disabilities. About 10 months ago,
Megan requested to take over responsibility for the product’s
accessibility. Since then, she has been working closely with
JooYoung and the community to understand accessibility
issues and collaborate on solutions.

3see online appendix at https://github.com/jooyoungseo/assets2023_vscode

VSCode_A11y ASSETS, October 22–25, 2023, New York, NY

3.2 Co-Design and Expert Review
Our collaborative approach utilized the strategies of co-design
and expert review. The co-design methodology fosters a joint
creation process between the user and developer, enabling
the developer to grasp the user’s requirements and, in turn,
develop a product aligning with these needs [14]. In this
framework, JooYoung acted as an expert, given his multi-
faceted role as a daily VSCode user, an experienced open-
source contributor, a data science educator, and an accessi-
bility professional. He outlined his varied computing experi-
ences to Megan and swiftly assessed his accessibility patches.
Our communication began asynchronously via GitHub, de-
bating on issues and potential solutions. Following a few
weeks of this pattern, we mutually agreed that scheduled
meetings could prove more efficient and productive. JooY-
oung’s wealth of ideas and insights complemented Megan’s
eagerness to learn and her drive to enhance the product’s ac-
cessibility. In these sessions, JooYoung demonstrated his use
of VS Code by sharing his screen on Zoom, posing queries,
and suggesting alterations. Conversely, Megan provided her
insights, questioned various aspects, and noted down bugs
or features requiring attention. These exchanges facilitated
Megan’s understanding of JooYoung’s usage of VS Code and
enabled JooYoung to comprehend the product components,
which could otherwise remain confusing or undiscovered.

Despite the implementation of regular meetings, asynchro-
nous communication via GitHub and email persisted. Megan
regularly composed follow-up emails encapsulating their meet-
ing discoveries prior to circulating them to the entire VS-
Code team. JooYoung further scrutinized these issues, pro-
viding comments if anything was overlooked or during the
fix-testing process.

4 CO-DESIGNED DELIVERABLES
While nearly all VS Code accessibility fixes and features
within the past year are products of this collaboration, below
are several of the highlights.

4.1 Terminal Buffer
As discussed in Section 2, xterm.js, the terminal UI utilized
by VSCode, incorporates a screen-reader accessibility mode
for blind people. However, a discernible gap emerged be-
tween accessibility (the ability to access information) and
usability (the convenience of use), which led to recurring
concerns among blind programmers.

Consider the following scenario: you type and execute the
command echo hello; echo world; in the terminal. You
will observe hello and world as two separate lines of output.
The existing accessibility mode of xterm.js presented this
content through a screen reader using an aria-live alert and
permitted a line-by-line review of the terminal output his-
tory with the Ctrl+UpArrow and Ctrl+DownArrow keys. This
worked well for short and simple outputs, but for lengthy out-
puts with intricate error messages or computational results,
a swift speech-to-text message was insufficient for capturing
substantial information in human working memory.

An additional concern is that Ctrl+Up/DownArrow naviga-
tion keys, designed to review terminal history, delivered the
entire contents of the focused line to the screen reader as
a single object. This made a detailed examination of ter-
minal contents on a character or word basis challenging.
Blind users had to switch the reading mode using the screen
reader’s virtual cursor (i.e., browse mode in NVDA; Quick-
Nav mode in VoiceOver) to review the terminal content more
thoroughly. To resume terminal input, they had to disable
the virtual cursor and return to forms mode (focus mode in
NVDA; QuickNav off in VoiceOver), leading to significant
inconvenience.

JooYoung initiated a discussion on the official Microsoft
VSCode GitHub page, bringing attention to these issues
and proposing solutions (see microsoft/vscode#98918: Ter-
minal output div container should be more accessible for
screen readers). Megan, meanwhile, developed terminal shell
integration, a feature allowing VS Code to comprehend ter-
minal activities, facilitating user-friendly command naviga-
tion, command output copying, and more. JooYoung demon-
strated that the terminal buffer remained inaccessible for
screen reader users, as it didn’t support arrow key navi-
gation. He proposed that the output view’s accessible ex-
perience be integrated into the terminal. Upon discussing
with a colleague, Megan incorporated the same underlying
component into the terminal, making the previously inac-
cessible terminal buffer navigable via arrow keys for blind
users. More specifically, he suggested replacing the terminal
output with a text editor buffer supporting standard arrow-
key navigation. The implementation, requiring over a year of
technical experimentation and collaborative testing, yielded
fruitful results. Initial efforts to redirect the terminal out-
put web container, designated as “list”, to aria “document”
or “textbox” landmarks proved unsatisfactory due to vary-
ing screen reader and platform support levels for aria. The
terminal output was then converted into a text area with
“contenteditable” and “read only” attributes, which also did
not gel with the screen reader’s speech buffer. Eventually,
we created a separate accessible terminal buffer by transfer-
ring the terminal output to VSCode’s native Monaco edi-
tor, ensuring optimal accessibility and usability for all blind
users on all platforms and screen readers. This feature, well-
received by many blind users in the Program-L community,
was officially introduced in the VSCode stable version 1.75.

In Figure 1, a screenshot depicts the terminal accessible
buffer in action. A screen reader is shown focusing on an
error message from a task terminal and audibly announcing:
“[watch-client] [12:41:01] Error: /Users/meganrogge/Repos/
vscode/vscode/src/vs/workbench/contrib/accessibility/brow
ser/accessibilityContributions.ts(198,63): ‘)’ expected.”. Users
can navigate the displayed content using standard arrow
keys without having to switch between different navigation
modes.

https://github.com/microsoft/vscode/issues/98918
https://github.com/microsoft/vscode/issues/98918
https://github.com/microsoft/vscode/issues/98918

ASSETS, October 22–25, 2023, New York, NY Seo and Rogge

Figure 1: The terminal accessible buffer.

4.2 Git Diff and Audio Cues
Git has been around for decades as a version control tool like
SVN, but its popularity has really taken off with the rise
of open-source social coding platforms based on Git, such
as GitHub and GitLab. Naturally, there have been many
personal and social needs for blind people to utilize Git in
collaborative environments. Git is originally a Unix-based
command-line tool, so in terms of accessibility, blind people
can use a screen reader to fully utilize Git in a terminal.
However, since Git has over 100 core Git commands, and
the number of possible combinations could be in the millions,
using Git via the command line takes a lot of effort and time
to become proficient. In response, various tools have emerged
that allow users to utilize Git as a GUI, and VSCode is a
very popular IDE that supports a collaborative environment
using Git.

Git’s git diff feature enables users to track changes and
compare differences between files or commits in an asynchro-
nous collaborative setting. Using this command, new addi-
tions are marked in green with a + prefix, while deletions
appear in red with a - prefix. VSCode ensured that the git
diff feature is accessible to screen reader users. When users
had the desired files or commits open for comparison, they
could quickly navigate to the differences using the F7 key
(Go to Next Difference) and Shift+F7 (Go to Previous Dif-
ference). These differences were prefixed with a + or - sign
to denote additions or deletions, respectively. Of course, this
approach was fine from an accessibility standpoint, but there
was room for improvement in terms of usability and conve-
nience for blind users. For example, visual affordances like
color coding and +- signs in git diff allowed sighted people
to skim quickly, but blind people had to listen to additional
speech prefixes, pronounced + (plus) and - (dash), serially
and wait for information before each change. Furthermore,
depending on the punctuation pronunciation settings of the
screen reader, the +- sign could be omitted to the screen
reader.

To ameliorate this, JooYoung suggested adding non-visual,
non-speech, and audible affordances to git diff in addition
to +- signs, so that blind people can hear and understand
them easily (see microsoft/vscode#147226). Audio cues, of-
ten referred to as “earcons”, are non-speech sound effects
that enhance accessibility. While VSCode and Microsoft’s
Visual Studio have only recently started supporting them,
their importance in non-visual programming was highlighted
decades ago by TV Raman, a blind computer scientist. He
introduced the concept of earcons as a counterpart to visual
icons when he developed Emacspeak [13]. For example, au-
dio cues allow the editor to quickly recognize if the current
line of code contains an error or a warning, instead of just
saying “error” or “warning” verbally, the editor will read out
the unique sound associated with the error or warning. These
sounds can also be delivered in parallel with text-to-speech
information from a screen reader, allowing blind program-
mers to quickly perceive the context of the code, similar to
the benefits of quickly scanning code with different color cod-
ing for those who receive visual feedback on code with their
eyes. JooYoung had several Zoom meetings with Megan and
Amnon Freidlin (Microsoft’s sound designer), and through
an iterative process, finalized the three audio cues used in the
git diff context. These were the diff line Inserted sound,
which is heard when something new is added (+), the diff line
Deleted sound, which is heard when something existing is re-
moved (-), and the diff line Modified sound, which is heard
when something existing is modified (+-, -+). Our success
came with some trial and error. For example, an early prob-
lem was that the Diff Line Inserted and Diff Line Deleted
sounds had a similar range and texture, making it difficult to
distinguish between them. JooYoung realized that this was a
common complaint in Program-L beyond his personal expe-
rience, so he worked with the sound designer to test and final-
ize a sample file that was as self-explanatory as possible and
didn’t interfere with the sound of the screen reader speech.
Of course, we had to leave the potential issue of the static
audio cues we chose not being able to adequately accommo-
date users with hearing impairments in certain ranges as a
future work in progress, but this feature greatly improved
the usability of our non-visual programming.

4.3 Verbosity Settings and Help Menus
JooYoung created issues pointing out places where minor
tweaks to the order or content of an aria-label could yield
massive productivity improvements for screen reader users.
Megan fixed some such instances and pointed team members
toward others, providing guidance about best practices go-
ing forward. Megan started self-hosting with a screen reader
shortly after this in order to proactively identify other prob-
lems. She felt overwhelmed by the noise and noticed some
content was repeated ad nauseum, so created an issue and
sought the feedback of JooYoung, who suggested that screen
reader verbosity settings remedy this and a similar approach
could be applied to VS Code’s aria content. Additionally,
JooYoung shared that while it was helpful to meet and learn

https://github.com/microsoft/vscode/issues/147226

VSCode_A11y ASSETS, October 22–25, 2023, New York, NY

about the new features via our meetings, most screen reader
users did not have this luxury. Megan and her colleague,
Daniel, brainstormed about a discoverable way for screen
reader users to find out about terminal features. Upon ter-
minal focus, an aria-label conveyed how to access the termi-
nal’s accessibility help menu. To reduce noise, this hint could
be disabled with a verbosity setting. Since then, help menus
and verbosity settings have been added for the Copilot inline
and panel chat, notebook, and other features. For example,
the terminal accessibility help menu contains important in-
formation for screen reader users such as commands to run
like “Run Recent Command (Ctrl+R)” (Figure 2). A screen
reader user can use arrow keys to read the content line by
line, character by character.

Figure 2: The terminal help menu

4.4 Accessibility Testing Initiative
JooYoung consistently provided feedback on GitHub, high-
lighting issues with both old and new features in VS Code.
His active engagement and insights were pivotal in spotlight-
ing an overlooked area. Megan, a key accessibility member
of the VSCode team, noticed that despite testing new fea-
tures on every platform - MacOS, Linux, and Windows at
the end of each month before a release, the screen reader
experience had been neglected. Inspired by JooYoung’s ob-
servations, Megan advocated for a new protocol: after a fea-
ture is released, it will be tested with screen readers in the
next iteration. Additionally, she initiated retroactive tests
on features to rectify this historical oversight.

5 DISCUSSION AND CONCLUSION
In our collaborative journey, blending the expertise of both
sighted and blind developers, we’ve unearthed pivotal in-
sights about open-source accessibility. Our endeavors with
Visual Studio Code serve as a case in point. Megan and JooY-
oung’s livestream seminar accentuated the profound impact
of merging accessibility considerations with open-source de-
velopment.

Open-source platforms are foundational in the tech realm.
Our reach and influence cascade into multiple offshoot ap-
plications. Hence, embedding accessibility in these parent
projects can have a magnified effect, promoting inclusivity
across numerous derivative platforms. The participatory na-
ture of open-source projects, welcoming feedback from a di-
verse array of users, is both a strength and a challenge. JooY-
oung’s collaboration, while external to Microsoft, highlights

this open engagement. Yet, a pertinent concern is the poten-
tial marginalization of voices unfamiliar with platforms like
GitHub. For open-source teams, this underscores the neces-
sity to proactively engage with and seek feedback from these
underrepresented communities. Such engagement is not just
about hearing, but understanding and integrating feedback.
The synergy between Megan and JooYoung exemplifies the
potential outcomes when such engagements are cultivated.
A recurring theme from our experience is the importance of
proactive accessibility considerations. Post-design modifica-
tions often present challenges, emphasizing the need for early
integration of accessibility measures. Drawing these threads
together, our co-design experience underscores the impera-
tive of fostering an inclusive ethos in open-source develop-
ment. By ensuring a platform that is receptive to diverse
voices, we can move closer to a universally accessible coding
ecosystem.

ACKNOWLEDGMENTS
We extend our gratitude to Program-L, an online commu-
nity of blind programmers, for their invaluable feedback and
testing of VS Code, as well as their insightful accessibility
suggestions. We also appreciate the VS Code team for their
commitment to accessibility. Special thanks to Isidor Nikolic,
Kai Maetzel, and Daniel Imms for their dedication and in-
valuable insights; to Raymond Zhao and Roberto Perez for
enhancing the site’s accessibility; to José Vilmar Estácio de
Souza, Amnon Freidlin, Marie Robbins, and Gino Scarpino
for their diligent testing and collaboration.

REFERENCES
[1] Khaled Albusays and Stephanie Ludi. 2016. Eliciting Program-

ming Challenges Faced by Developers with Visual Impairments:
Exploratory Study. In Proceedings of the 9th International
Workshop on Cooperative and Human Aspects of Software En-
gineering (CHASE ’16). Association for Computing Machinery,
New York, NY, USA, 82–85. https://doi.org/10.1145/2897586.
2897616

[2] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017.
Interviews and Observation of Blind Software Developers at
Work to Understand Code Navigation Challenges. In Proceed-
ings of the 19th International ACM SIGACCESS Conference
on Computers and Accessibility (ASSETS ’17). Association for
Computing Machinery, New York, NY, USA, 91–100. https:
//doi.org/10.1145/3132525.3132550

[3] Raghavendra Rao Althar and Debabrata Samanta. 2021. Build-
ing Intelligent Integrated Development Environment for IoT in
the Context of Statistical Modeling for Software Source Code.
In Multimedia Technologies in the Internet of Things Environ-
ment, Raghvendra Kumar, Rohit Sharma, and Prasant Kumar
Pattnaik (Eds.). Springer, Singapore, 95–115. https://doi.org/
10.1007/978-981-15-7965-3_7

[4] Cynthia L. Bennett, Erin Brady, and Stacy M. Branham. 2018.
Interdependence as a Frame for Assistive Technology Research
and Design. In Proceedings of the 20th International ACM
SIGACCESS Conference on Computers and Accessibility (AS-
SETS ’18). Association for Computing Machinery, New York,
NY, USA, 161–173. https://doi.org/10.1145/3234695.3236348

[5] James H. Cross and T. Dean Hendrix. 2007. jGRASP: An Inte-
grated Development Environment with Visualizations for Teach-
ing Java in CS1, CS2, and Beyond. Journal of Computing Sci-
ences in Colleges 23, 2 (Dec. 2007), 170–172.

[6] Lilian De Greef, Dominik Moritz, and Cynthia Bennett. 2021. In-
terdependent Variables: Remotely Designing Tactile Graphics for

https://learn.microsoft.com/en-us/events/vs-code-day-2023/accessibilty-in-vs-code
https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/3132525.3132550
https://doi.org/10.1145/3132525.3132550
https://doi.org/10.1007/978-981-15-7965-3_7
https://doi.org/10.1007/978-981-15-7965-3_7
https://doi.org/10.1145/3234695.3236348

ASSETS, October 22–25, 2023, New York, NY Seo and Rogge

an Accessible Workflow. In The 23rd International ACM SIGAC-
CESS Conference on Computers and Accessibility. ACM, Vir-
tual Event USA, 1–6. https://doi.org/10.1145/3441852.3476468

[7] Jan Janssen, Sudarsan Surendralal, Yury Lysogorskiy, Mira
Todorova, Tilmann Hickel, Ralf Drautz, and Jörg Neugebauer.
2019. Pyiron: An Integrated Development Environment for Com-
putational Materials Science. Computational Materials Science
163 (June 2019), 24–36. https://doi.org/10.1016/j.commatsci.
2018.07.043

[8] Jazette Johnson, Andrew Begel, Richard Ladner, and Denae Ford.
2022. Program-L: Online Help Seeking Behaviors by Blind and
Low Vision Programmers. In 2022 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE,
1–6. https://doi.org/10.1109/VL/HCC53370.2022.9833106

[9] S. Mealin and E. Murphy-Hill. 2012. An Exploratory Study of
Blind Software Developers. In 2012 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC).
IEEE, Innsbruck, 71–74. https://doi.org/10.1109/VLHCC.2012.
6344485

[10] Mike Oliver. 2013. The Social Model of Disability: Thirty Years
On. Disability & Society 28, 7 (Oct. 2013), 1024–1026. https:
//doi.org/10.1080/09687599.2013.818773

[11] Venkatesh Potluri, Maulishree Pandey, Andrew Begel, Michael
Barnett, and Scott Reitherman. 2022. CodeWalk: Facilitating
Shared Awareness in Mixed-Ability Collaborative Software De-
velopment. In The 24th International ACM SIGACCESS Con-
ference on Computers and Accessibility. ACM, Athens Greece,

1–16. https://doi.org/10.1145/3517428.3544812
[12] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y.

Vidya, Manohar Swaminathan, and Gopal Srinivasa. 2018.
CodeTalk: Improving Programming Environment Accessibility
for Visually Impaired Developers. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems.
ACM, Montreal QC Canada, 1–11. https://doi.org/10.1145/
3173574.3174192

[13] T. V. Raman. 1996. Emacspeak—a Speech Interface. In Proceed-
ings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’96). Association for Computing Machinery,
New York, NY, USA, 66–71. https://doi.org/10.1145/238386.
238405

[14] Elizabeth B.-N. Sanders and Pieter Jan Stappers. 2008.
Co-Creation and the New Landscapes of Design. CoDe-
sign 4, 1 (March 2008), 5–18. https://doi.org/10.1080/
15710880701875068

[15] Bernhard Stöger, Klaus Miesenberger, Walther Neuper, Makar-
ius Wenzel, and Thomas Neumayr. 2022. Designing an Inclu-
sive and Accessible Mathematical Learning Environment Based
on a Theorem Prover. In Computers Helping People with Spe-
cial Needs (Lecture Notes in Computer Science), Klaus Miesen-
berger, Georgios Kouroupetroglou, Katerina Mavrou, Roberto
Manduchi, Mario Covarrubias Rodriguez, and Petr Penáz (Eds.).
Springer International Publishing, Cham, 47–55. https://doi.
org/10.1007/978-3-031-08648-9_7

https://doi.org/10.1145/3441852.3476468
https://doi.org/10.1016/j.commatsci.2018.07.043
https://doi.org/10.1016/j.commatsci.2018.07.043
https://doi.org/10.1109/VL/HCC53370.2022.9833106
https://doi.org/10.1109/VLHCC.2012.6344485
https://doi.org/10.1109/VLHCC.2012.6344485
https://doi.org/10.1080/09687599.2013.818773
https://doi.org/10.1080/09687599.2013.818773
https://doi.org/10.1145/3517428.3544812
https://doi.org/10.1145/3173574.3174192
https://doi.org/10.1145/3173574.3174192
https://doi.org/10.1145/238386.238405
https://doi.org/10.1145/238386.238405
https://doi.org/10.1080/15710880701875068
https://doi.org/10.1080/15710880701875068
https://doi.org/10.1007/978-3-031-08648-9_7
https://doi.org/10.1007/978-3-031-08648-9_7

	Abstract
	1 Introduction
	2 Background: Visual Studio Code and Accessibility
	3 Methods
	3.1 Author Profiles and Collaboration Context
	3.2 Co-Design and Expert Review

	4 Co-Designed Deliverables
	4.1 Terminal Buffer
	4.2 Git Diff and Audio Cues
	4.3 Verbosity Settings and Help Menus
	4.4 Accessibility Testing Initiative

	5 Discussion and Conclusion
	Acknowledgments
	References

